Master of Science in Data Science Course Curriculum

Batch: 2023-2024 Academic Year: 2023-'24 W.E.F. July 2023

GSFC University, Vigyan Bhavan, P. O. Fertilizernagar, Vadodara - 391750, Gujarat, India

Teaching Scheme

Semester – I

Sr	Course Code	Course Name	Teaching Scheme (Hours/week)			Teaching Credit			Evaluation Scheme							
No.			L	Р	Т	Total	L	Р	Т	Total	Theory : MS Marks	Theory : CEC Marks	Theory : ES Marks	Theory Marks	Practical Marks	Total Marks
1.	MSDS101	Data structures & Algorithms (DSA)	3	2	0	5	3	1	0	4	20	40	40	100	50	150
2.	MSDS102	Object Oriented Programming using C++ (OOP)	3	2	0	5	3	1	0	4	20	40	40	100	50	150
3.	MSDS103	Programming in "R" (RP)	3	2	0	5	3	1	0	4	20	40	40	100	50	150
4.	MSDS104	Mathematical Foundation for Data Science (MDS)	4	0	1	5	4	0	1	5	20	40	40	100	0	100
5.	MSDS105	Statistics for Data Science-I (SDS)	3	2	0	5	3	1	0	4	20	40	40	100	50	150
6.	MSDS106	Comprehensive VIVA	0	0	0	0	0	0	0	2	0	0	0	0	50	50
7.	SECC101	Internship#*	0	0	0	0	0	2	0	2	0	0	0	0	50	50
		Total	16	8	1	25	16	6	1	25	100	200	200	500	300	800

Note: L = Lecture, P = Practice, T = Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

#As per NEP, minimum 60 hours of training has to be taken by the student at respective company/industry for fulfillment of two credits under internship component. This can be equivalent to 2-3 weeks depending on the rules/regulations of the company/industry.

*As per the academic policy of the GSFC University, students have to opt for the industrial internship after completion of their end semester examination.

COURSE CODE	COURSE NAME	SEMESTER
MSDS101	Data Structures and	I
	Algorithms	

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
45	30	0	75	3	1	0	4

Course Prerequisites	Fundamental knowledge of information and data					
Course Category	Major Course					
Course focus	Employability/Skill development					
Rationale	Data structures and algorithms play a crucial role in both local and global contexts. At a local level, efficient data structures and algorithms enable faster processing, retrieval, and storage of information, leading to improved performance of local systems, applications, and databases. Nationally, they contribute to the development of advanced infrastructure, optimizing resource allocation, and enabling the efficient functioning of critical sectors like healthcare, transportation, and finance. Internationally, data structures and algorithms drive global technological advancements, facilitating seamless communication, secure data exchange, and collaborative research. Their relevance lies in enabling innovation, scalability, and problem-solving, benefiting individuals, communities, and societies at various levels.					
Course Revision/ Approval Date:	July 30, 2023					
Course Objectives	To enable the student to:					
(As per Blooms' Taxonomy)	 Get an idea about data and how it is stored in memory structure. To make students aware about arrays and stacks used different programming languages. 					

- 3. Familiarize with sorting and searching techniques.
- 4. **Understand** about tree and graph structures.
- 5. Elaborate testing approach with data structure.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction to Data Structures & Algorithms: Arrays and Strings, AlgorithmDevelopment, Complexity analysis, Recursion.	20%	9
Unit 2: Linear Data Structures: Stacks: Operations and Applications, Queues: Operations and Applications, Circular Queues: Operations and Applications, Links Lists: Operation – Creations, insertion, Deletion, Circular Lists, Doubly Linked.	20%	9
Unit 3: Sorting & Searching: Insertion Sort, Merge Sort, Quick Sort, Binary Search, Linear Search, Selection Sort	20%	9
Unit 4: Non Linear Data Structures: Graphs I: Representation and Traversal, Representation: Matrix, Adjacency list, Traversal: Depth First Search, Breadth First Search, Graphs II: Basic Algorithms, Minimum Spanning Tree, Shortest Path, All pairs Shortest Path, Transitive Closer, Binary Trees, Representation, Operations: Insert, Delete, Traversal: Preorder, In order, Postured, Heap Sort, Method and Complexity, Priority Queue, Search Trees, AVI-trees, B-tree, External Search.	25%	12
Unit 5: Hashing Techniques, String algorithms: Hashing Techniques, Pattern Matching, Text Editor	10%	6

List of Practical	Weightage	Contact hours
1: Introduction to dynamic memory allocation. DMA	20%	4
functions malloc(), calloc(), free() etc.		
2: Implement a program for stack that performs the	20%	10
following operation using an array.		
a) PUSH		

b) POP		
c) PEEP		
d) CHANGE		
e) DISPLAY		
Implement a program to convert infix notation to postfix		
notation using stack.		
Write a program to implement QUEUE using arrays that		
performs following operations: a)INSERT		
b) DELETE		
c) DISPLAY		
Write a program to implement Circular Queue using arrays		
that performs following operations:		
a) INSERT		
b) DELETE		
c) DISPLAY		
Write a menu driven program to implement following		
operations on singly linked list.		
a) Insert a node at the front of the linked list		
b) Insert a node at the end of the linked list.		
c) Insert a node such that the linked list is in ascending		
order.		
d) Delete the first node of a linked list.		
e) Delete a node before specified position.		
Write a program to implement stack using linked list		
3:	20%	8
Write a program to implement linear search		
Write a Program to implement Binary Search		
Write a program to implement, Bubble sort, Merge sort,		
Quick sort		
Write a program to create binary search tree		
Implement recursive and non recursive tree traversing		
methods inorder, preorder and post order.		
4: Solve various examples related to Graphs and Trees.	20%	4
5: Write a program to implement hashing using Linear	10%	2
Probe.		

Visual Aids and Demonstrations, Hands-On Approach, Active Learning Strategies, Real-World Examples, Project-Based Learning, Continuous Assessment.

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Subdomain
After successful completion of the above course, stu	idents will be abl	e to:
CO1: Understand and use the process of abstraction using a programming language such as' C++.		Understand
CO2: Analyze step by step and develop algorithms to solve real world problems.		Analyze
CO3: Implement various data structures viz. Stacks, Queues, Linked Lists, Trees and Graphs	Cognitive	Apply
CO4: Understand various searching & sorting techniques.		Understand
CO5: Identify the appropriate data structure to design efficient algorithms for the given application.		Analyze

Learning I	Resources
1.	Reference Books:
	1. ReemaThareja, Data Structures Using C, 2 nd Edition
	2. Horowitz, Sartaj Sahni, Fundamentals of Data Structures in
	C++, 2 nd Edition
	3. Yashwant Kanetkar, Data Structure Through C, 2 nd Edition
	4. Jean- Paul Tremblay & Paul Sorenson, An Introduction to Data
	Structures with Application, 2 nd edition
	5. NarasimhaKarumanchi, Data Structures and Algorithms Made
	Easy: Data Structures and Algorithmic Puzzles, 5 th Edition

2.	Video Tutorial:
	https://www.youtube.com/playlist?list=PL2_aWCzGMAwI3W_JlcBb TwiQSsOTa6P
3.	Other Electronic Resources: https://nptel.ac.in/courses/106/102/106102064/

Evaluation Scheme	Total Marks						
Theory:	20 marks						
Mid semester Marks							
Theory:	40 marks						
End Semester Marks							
Theory:							
Continuous Evaluation	Attendance	05 marks					
Component Marks	MCQs	10 marks					
(CEC)	Open Book Assignment	15 marks					
	Article Review	10 marks					
	Total	40 Marks					
Practical Marks	Attendence	05 mortes					
		05 marks					
	Practical Exam	20 marks					
	Viva	10 marks					
	Journal	10 marks					
	Discipline	05 marks					
	Total	50 Marks					

COURSE CODE	COURSE NAME	SEMESTER
MSDS102	Object oriented	I
	Programming with C++	

Teaching Scheme (Hours)			Teaching Credit				
Lectur e	Practic al	Tutoria l	Total Hours	Lectur e	Practic al	Tutoria l	Total Credit
45	30	0	75	3	1	0	4

Course Prerequisites	Fundamental knowledge of information and data	
Course Category	Professional core courses	
Course focus	Skill development	
Rationale	OOP with C++ is locally relevant as it enhances code organization, reusability, and data security. Nationally, OOP is significant for the software industry, promoting scalability, code maintenance, and employment opportunities. Internationally, OOP in C++ enables collaboration, interoperability with diverse systems, and utilization of popular frameworks and libraries. OOP in C++ empowers developers at all levels to build modular, efficient, and robust software systems, contributing to local development projects, national software initiatives, and global software ecosystems.	
Course Revision/ Approval Date:	July 30, 2023	
Course Objectives	To enable the student to:	
(As per Blooms' Taxonomy)	 Be aware about the basics of OOP for every O-O based programming language. Be familiar with class and object with function. Understand working and importance of constructor and destructor. Get a brief idea about inheritance. 5: Get an overview of file handling and templates. 	

Course Content (Theory)	Weightage	Contact hours
Unit 1: Principles of OOP: Programming Paradigms, Basic concepts, Benefits of OOP, Applications of OOP. Introduction to C++, History of C++, Structure of C++, Basic data types, Derived data types, Symbolic constants.Dynamic initialization, Type modifiers, Type Casting, Operator and control statements, Input and Output statements in C++.	20%	9
Unit 2: Classes and objects, class specification, member function specification, scope resolution operator, Access qualifiers, Instance creation, Member functions. Function prototyping, Function components, and Passing parameters, call by reference, Return by reference, Inline functions, Default arguments, Overloaded function.	20%	9
Unit 3: Array of objects, pointers to objects, this pointer, Dynamic allocation operators, Dynamic objects. Constructors, parameterized constructors, Overloaded constructors, Constructors with default arguments, copy constructors, static class members and static objects. Operator Overloading, Overloading unary and binary operator, Overloading the operator using friend function, stream operator overloading, data conversion.	20%	9
Unit 4: Inheritance, Defining derived classes, Single inheritance, protected data with private inheritance, multiple inheritance, multi-level inheritance, hierarchical inheritance, hybrid inheritance, multipath inheritance, Constructors in derived and base class, Abstract classes, virtual function and dynamic polymorphism, virtual destructor. Exception Handling, principle of Exception handling, Exception handling mechanism, multiple catch, Nested try, Rethrowing the exception.	20%	9
Unit 5: Streams in C++, Stream classes, Formatted and Unformatted data, manipulators User defined manipulators, file streams, file pointer manipulation, file open and close.	20%	9

Templates, Template functions and Template classes.		
---	--	--

List of Practical	Weightage	Contact hours
1: Write a program to demonstrate simple C++ structure with help of cout and cin. Write a program to demonstrate cascading I/O. Explain the use of name space in C++ with proper examples. Write a different program to demonstrate control statements available in C++. Write a different program to demonstrate loops available in C++.	20%	4
2: Write a program to demonstrate scope resolution operators and reference variables in C++.	20%	6
Write a program to demonstrate implicit type casting and explicit type casting in C++.		
Write a program to demonstrate const keyword and #define.		
Write a program to demonstrate different types of user defined function and Function call		
Write a program to demonstrate class and object creation. Define a member function inside the class and outside the class.		
Write a program to show the working of different access specifiers.		
What do you understand about the Inline function? How can you create an Inline function ?		
3: Why do an array of objects require? Demonstrate an array of objects with proper examples.	20%	6
Write a program to demonstrate concepts and different types of constructor.		
Write difference between Constructor overloading and overriding. Also apply the concept with proper examples.		
Write a program to demonstrate friend function.		
Write a program to demonstrate the concept of copy constructor and static class member.		
4: Write a program to demonstrate different type of inheritances	20%	8
Write a program to demonstrate the concept of		

olymorphism and exception handling					
Explain the behavior of the constructor in derived class					
using examples.					
5: Perform following operation of file management	20%	4			
Count characters & spaces					
• Append to a file					
Copy contents & change case					
• Merge two files					
 Count characters, words & lines 					
 Arrange records in descending order 					
• Add & read contents of file					
• Create file to store employee details					
• Display content of file					

Visual Aids and Demonstrations, Hands-On Approach, Active Learning Strategies, Real-World Examples, Project-Based Learning, Continuous Assessment

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Subdomain
After successful completion of the above course, stu	idents will be abl	le to:
CO1: Understand object-oriented programming features in C++.		Understand
CO2: Implement computer programs to solve real world problems based on object-oriented principles.		Apply
CO3: Understand the concept of Array, pointers and Polymorphism.	Cognitive	Understand
CO4: Analyze concept of inheritance and exception handling.		Analyze
CO5: Develop the applications using object oriented programming with C++.		Create

Learning Resources

Reference Books: 1.

	 Barbara E. Moo, JoséeLajoie, Stanley B.Lippman, C++ Primer, 5th Edition.
	 Tony Gaddis, Starting Out with C++ - From Control Structures through Objects.
	 Andrew Koenig Accelerated C++: Practical Programming by Example, 1st Edition
	 E Balagurusamy, Object-Oriented Programming with C++, 7th edition
	5. YashwantKanetkar, Let US C++, 2 nd Edition
2.	Video Tutorial
	https://www.studytonight.com/courses/cpp-video-tutorial/
3.	NPTEL MOOC
	https://nptel.ac.in/courses/106/101/106101208/

Evaluation Scheme	Total Marks	
Theory:	20 marks	
Mid semester Marks		
Theory:	40 marks	
End Semester Marks		
Theory:		
Continuous Evaluation	Attendance	05 marks
Component Marks	MCQs	10 marks
(CLC)	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks

Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

COURSE CODE	COURSE NAME	SEMESTER
MSDS103	R Programming	Ι

Teaching Scheme (Hours)			Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
45	30	0	75	3	1	0	4

Course Pre-requisites	Fundamental Knowledge of any programming language + statistics
Course Category	Major Course
Course focus	Skill Enhancement
Rationale	R Programming has been widely used for assessing diverse data. This being the skill enhancement subject will help students to learn and implement different statistical theories/notions on computers for studying/analysing/assessing large datasets.
Course Revision/ Approval Date:	July 30, 2023
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	 Gain insight to the fundamental notions of R Programming. 2.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction to R Programming Introduction to R programming History and overview of R, Install and configuration of R programming environment, Installation and demonstration of R-Studio, R Command Prompt, R Script File, Basic language elements and data structures, R - Data Types, Vectors, Lists, Matrices, Arrays, Factors, Data Frames, Variable Assignment, Data Type of a Variable, Finding and deleting Variables, Operators, Reading and writing in R	10%	9
Unit 2: Data Preparation	25%	14
R Data Frame: Create, Append, Select, Subset, List in R: Create, Select Elements with Example, R Sort a Data Frame using Order(), R Dplyr, Tutorial: Data Manipulation(Join) & Cleaning(Spread), Merge Data Frames in R: Full and Partial Match, In-built Functions in R Programming (with Example)		
Unit 3: Programming in R	25%	8
IF, ELSE, ELSE IF Statement in R, Switch Statement, if else ladder, ifelse function, For Loop in R with Examples for List and Matrix, While Loop in R with Example, Repeat loop, Break and Next Statement, apply(), lapply(), sapply(), tapply() Function in R with Examples.		
Unit 4: Data Analysis and Visualization in R	20%	9
Import Data into R: Read CSV, Excel Files, How to Replace Missing Values(NA) in R: na.omit & na.rm, R Exporting Data to Excel, CSV, Text File, R Aggregate Function: Summarize & Group by() Example, R Select(), Filter(), Arrange(), Pipeline with Example		
Scatter Plot in R using ggplot2, How to make Box plot in R, Bar Chart & Histogram in R, Line graph, Scatter plot, T Test in R: One Sample and Paired, R ANOVA Tutorial: One way & Two way (with Examples).		
Unit 5: Advance R Concepts	20%	10
Data querying: SQL and R, Writing functions, Reporting, Interactive reporting with Rmarkdown		

List of Tutorials	Weightage	Contact hours
Unit 1: Problem solving Examples on Graph Theory.	20%	3
Unit 2: Problem solving on Vector Spaces.	20%	3

	2 00/	
Unit 3: Problem solving on Linear Transformations.	20%	3
Unit 4: Problem solving on Set Theory.	20%	3
Unit 5: Problem solving on Propositional Logic and recursive relations.	20%	3

Instructional Method and Pedagogy: Chalk-Talk, Classroom Discussions, Notes, Use of GeoGebra Toolbox.

Course Outcomes:	Blooms'	Blooms'
Course Outcomes.	Taxonomy	Taxonomy
	Domain	Subdomain
After successful completion of the above course, students	Remember,	Define,
will be able to:	Understand	Classify,
CO1: Define, classify, explain the fundamental notions	&	Draw,
related to graph theory and solve relevant problems in the	Apply	Explain
field.		&
		Solve
CO2: Define, Demonstrate & apply the linear algebra in	Remember,	Define,
real-life problems/diverse fields.	Understand	Demonstrate
	&	&
	Apply	Apply
CO3: Use recursion and recurrence relations for solving	Apply	Use,
real-life problems.		Demonstrate
		&
		Solve
CO4: Define & Demonstrate the concepts related to set	Understand,	Define,
theory and apply the concepts for solving relevant	Evaluate	Demonstrate
problems.		&
		Apply
CO5: Apply propositional calculus for solving real-life		Apply
problems.	Apply	&
		Solve

Learning Re	esources
1.	 Reference Books: 1. David C. Lay, Steven R. Lay and Judi Donald, Linear Algebra and its applications, Pearson, 5th ed., 2015. 2. Kenneth H. Rosen, Discrete Mathematics and Its Applications, Tata McGraw Hill, 6th edition

	3. Narsingh Deo, Graph Theory and its Applications, PHI learning Private Ltd,
	2016
	4. Gilbert Strang, Linear Algebra and its applications, 4th ed., Cengage Learning,
	2005
	5. Jean Paul Trembley, R Manohar, "Discrete Mathematical Structures with
	Application to Computer Science", Tata McGraw Hill, 1997
	6. Johnson Bough R., "Discrete Mathematics", 5th Edition, PEA, 2001.
	7. Ronald Graham, Donald Knuth and Oren Patashik, "Concrete Mathematics: A
	Foundation for Computer Science", Addison- Wesley, 1989.
2.	Other Electronic Resources: GeoGebra Toolbox: <u>https://www.geogebra.org/</u>

Evaluation Scheme	Total Marks	
Theory:	20 marks	
Mid semester Marks		
Theory:	40 marks	
End Semester Marks		
Theory:		
Continuous Evaluation	Attendance	05 marks
Component Marks	MCQs	10 marks
(CLC)	Open Book Assignment	15 marks
	Article Review	10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

COURSE CODE	COURSE NAME	SEMESTER
MSDS104	Mathematical Foundation	I
	for Data Science	

Teaching Scheme (Hours)			Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
60	0	15	75	4	0	1	5

Course Pre-requisites	Fundamental Knowledge of Mathematics
Course Category	Major Course
Course focus	Employability/Skill Development
Rationale	This course involves the basics of graph theory and its applications. We also study the basics of vector spaces and linear algebra and its applications. Students will study set theory, propositional logic and Recursive relations.
Course Revision/ Approval Date:	July 30, 2023
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	1: Understand, remember & apply the fundamental notions and applications of graph theory.
	2: Understand, remember & apply the linear algebra concepts in diverse fields.

3: Understand & apply recursion and recurrence relations in real-life problems.
4: Remember, understand, apply & analyse concepts related to set theory.
5: Understand & apply propositional calculus to real-life situations.

Course Content (Theory)	Weightag e	Contac t hours
Unit 1: Graphs And Trees Introduction to graphs, Directed and Undirected graphs, Isomorphic graphs, Subgraphs, Cut points and Bridges, Multigraph and Weighted graph, Paths and circuits, Shortest path in weighted graphs, Eurelian path and circuits, Hamilton paths and circuits, Planar graphs, Euler's formula, Trees, Spanning trees, Binary trees	20%	12
Unit 2: Linear Algebra, Vector spaces, subspaces, Linear Dependence, Span, Basis, Dimension; Definitions of Norms, Inner Products and metrics. Orthogonality	20%	12
Unit 3: Representation of linear transformations as a matrix, Similarity transformation Rank-Nullity theorem, Fundamental Theorem of Linear Algebra	20%	12
Unit 4: Introduction to set theory, Set operations, Algebra of sets, Duality, Finite and Infinite sets, Classes of sets, Power Sets, Multi sets, Cartesian Product, Representation of relations, Types of relation, Equivalence relations and partitions, Partial ordering relations and lattices, Function and its types, Composition of function and relations, Cardinality and inverse relations.	20%	12
Unit 5: Basic operations: AND (^), OR(v), NOT (~), Truth value of a compound statement, propositions, tautologies, contradictions Recursion and Recurrence Relation: linear recurrence relation with constant coefficients, Homogeneous solutions, Particular solutions.	20%	12

List of Tutorials	Weightage	Contact hours
Unit 1: Problem solving Examples on Graph Theory.	20%	3
Unit 2: Problem solving on Vector Spaces.	20%	3
Unit 3: Problem solving on Linear Transformations.	20%	3
Unit 4: Problem solving on Set Theory.	20%	3
Unit 5: Problem solving on Propositional Logic and recursive relations.	20%	3

Instructional Method and Pedagogy: Chalk-Talk, Classroom Discussions, Notes, Use of GeoGebra Toolbox.

Course Outcomes:	Blooms'	Blooms'
Course Outcomes.	Taxonomy	Taxonomy
	Domain	Subdomain
After successful completion of the above course, students wi	ll be able to:	
CO1: Define, classify, explain the fundamental notions	Remember,	Define,
related to graph theory and solve relevant problems in the	Understand	Classify,
field.	&	Draw,
	Apply	Explain
		&
		Solve
CO2: Define, Demonstrate & apply the linear algebra in	Remember,	Define,
real-life problems/diverse fields.	Understand	Demonstrate
	&	&
	Apply	Apply
CO3: Use recursion and recurrence relations for solving	Apply	Use,
real-life problems.		Demonstrate
		&
		Solve
CO4: Define & Demonstrate the concepts related to set	Understand,	Define,
theory and apply the concepts for solving relevant	Evaluate	Demonstrate
problems.		&
		Apply
CO5: Apply propositional calculus for solving real-life		Apply
problems.	Apply	&
		Solve

Learning Resources

1.	Reference Books:
	1. David C. Lay, Steven R. Lay and Judi Donald, Linear Algebra and its applications, Pearson, 5 th ed., 2015.
	2. Kenneth H. Rosen, Discrete Mathematics and Its Applications, Tata McGraw Hill, 6 th edition
	3. Narsingh Deo, Graph Theory and its Applications, PHI learning Private Ltd, 2016
	4. Gilbert Strang, Linear Algebra and its applications, 4 th ed., Cengage Learning, 2005
	5. Jean Paul Trembley, R Manohar, "Discrete Mathematical Structures with Application to Computer Science", Tata McGraw Hill, 1997
	6. Johnson Bough R., "Discrete Mathematics", 5 th Edition, PEA, 2001.
	7. Ronald Graham, Donald Knuth and Oren Patashik, "Concrete Mathematics: A
	Foundation for Computer Science", Addison- Wesley, 1989.
2.	Other Electronic Resources: GeoGebra Toolbox: https://www.geogebra.org/

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous Evaluation Component Marks (CEC)	AttendanceMCQsOpen Book AssignmentArticle ReviewTotal	05 marks 10 marks 15 marks 10 marks 40 Marks

20 | Page

Master of Science in Data Science Course Curriculum

Batch: 2023-2024 Academic Year: 2023-'24 W.E.F. July 2023

GSFC University, Vigyan Bhavan, P. O. Fertilizernagar, Vadodara - 391750, Gujarat, India

Teaching Scheme

Semester – II

Sr.	Sr. Course		Teaching Scheme (Hours/week)			Teaching Credit			Evaluation Scheme							
No.	Code	Course Name	L	Р	Т	Total	L	Р	Т	Total	Theory : MS Marks	Theory : CEC Marks	Theory : ES Marks	Theory Marks	Practical Marks	Total Marks
1.	MSDS201	Programming using Python	3	2	0	5	3	1	0	4	20	40	40	100	50	150
2.	MSDS202	Database Management System	3	2	0	5	3	1	0	4	20	40	40	100	50	150
3.	MSDS203	Fundamentals of AI & ML	3	2	0	5	3	1	0	4	20	40	40	100	50	150
4.	MSDS204	Numerical Methods & Analysis using MATLAB	3	2	0	5	3	1	0	4	20	40	40	100	50	150
5.	MSDS205	Statistics - II	3	2	0	5	3	1	0	4	20	40	40	100	50	150
6.	AECC203	Working with Spreadsheets	1	2	0	3	1	1	0	2	20	40	40	100	50	150
7.	SECC201	Internship	0	0	0	2	0	0	0	2	0	0	0	0	50	50
8.	SECC202	Comprehensive VIVA	0	0	0	2	0	0	0	2	0	0	0	0	50	50
		Total	16	12	0	32	16	6	0	26	120	240	240	600	400	1000

Note: L = Lecture, P = Practice, T = Tutorial, MS - Mid Semester, CEC - Continuous Evaluation Component, ES - End Semester

Program Coordinator

Associate Dean

COURSE CODE	COURSE NAME	SEMESTER
MSDS201	Programming using Python	II

Т	eaching Sch	eme (Hour	·s)	Teaching Credit			
Lecture	Practical	Tutorial	itorial Total Hours		Practical	Tutorial	Total Credit
45	30	0	75	3	1	0	4

Course Prerequisites	Fundamental knowledge of any basic programming language.
Course Category	Major Course
Course focus	Employability
Rationale	The present course will equip students with the skills related to python programming and its applications. Detailed knowledge of libraries and their utility will help students to apply the gained knowledge for performing solution oriented tasks related to data analysis, data cleaning, and, more rigorous tasks like application development can also be done. Small project based learning can equip students with utmost important skill-sets.
Course Revision/ Approval Date:	
Course Objectives (As per Blooms' Taxonomy)	 To enable the student to: 1: Understand the fundamental components of the programming process. 2: Inculcate the knowledge related to the control structures of procedural programming languages. 3: Provide in-depth knowledge about List, Tuple & Dictionaries. 4: Be aware of the utility of python programming and basic functions. 5: Be familiar with different libraries and their utility in advanced technologies

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction & Control Statements Installation and Working with Python, Essentials of a Python program, Program Structure of Python, Basic Syntax, Variables and Identifiers, Built- In Data Types. Variable definition, Operators And Expressions, Constants And Literals, Basic Input/output Statement. Control Loops and Array Decision Making - Conditions, Relational, Operators, Logical Connectives, If-Else , Nested If-Else Statement, Replacement of switch case Loops: While loop, Do-while, For loop, Nested loops , Break, Continue and pass Statement	20%	9
Unit 2: Python Data Types Arrays – One dimensional and multidimensional array, Array processing. String Manipulation - accessing Strings, Basic Operations, String slices and Function and Methods, Lists: Introduction, accessing list, Operations, Working with lists, Function and Methods. Tuple: Introduction, accessing tuples, Operations,. Dictionaries: Introduction, Accessing values in dictionaries, Working with dictionaries, Properties	20%	9
Unit 3: Functions in python Dates and Time: Basic date and time classes, Different time formats, Converting between formats, Formatting dates and times, Parsing date/time information, Binary Data: What is Binary Data?, Binary vs. text, Using the Struct module. Defining a function, Python Built-in Functions, Calling a function, Types of functions, Function Arguments, Default Argument, Anonymous functions, Global and local variables, Custom Functions vs. Standard Functions, Refactoring, Making Functions Reusable, Functions as Data	20%	9
Unit 4: Python Library Overview & Introduction to Tinker An Introduction to libraries used for AI & ML, IoT & Cyber Security: numpy, matplotlib, pandas, opencv, tinker, tensorflow, keras, tensorflow, Theano, Sci-kit learn, PyTorch, mraa, sockets, mysqldb, requests, paho-mqtt, Scapy, Requests, IMpacket, pwntools, Cryptography, python-nmap, Faker, Twisted, pylibnet, RawSocketpy. Reading from a file – Writing to a file – Other Operations on Files. GUI Programming: Tkinter and its widgets – Overview of other GUIs	20%	9
Unit 5: OOP Concepts & Introduction to Django Classes and Object-Oriented Programming, Abstract Data Types and Classes, Inheritance, Encapsulation and Information Hiding. Features of Django , Django web server, Understanding Django environment, Django architecture, MVC and MTVA , view that displays a hyperlink , Mapping the views to URLs, Improving the views using templates, Template inheritance, Sending data	20%	9

from url to view, Sending data from view to template, Create & Activating the app, Adding background color for web pages, Adding banner, background image to the web site

		List of Practical	Weightage	Contact bours	
1.				nours	
1:	_	Domonstrate installation of with an			
	a.	Werking of acceletation of python.			
	D.	working of variables and identifiers with simple	200/	C	
		programs.	20%	6	
	c.	Create different variables to show different types of data,			
		operators and expressions.			
	d.	Demonstrate working of constants.			
	e.	Usage of input output statements.			
2:					
	a.	Demonstrate practicals based on conditional statements.			
	b.	Working of decision statements.			
	c.	Show replacement of switch statements. 20% 6			
	d.	Demonstrate working of different loops.			
	e.	Usage of break, continue and pass.			
	f.	Show working of arrays.			
	g.	Show different string manipulations.			
3:					
	a.	Demonstrate List and accessing of list.	20%	6	
	b.	Working of tuples.			
	c.	Show working of dictionaries.			
4:		č			
	a.	Demonstrate date and time functions.			
	b	Working of conversion of different date format	20%	6	
	5.	manipulations		Ŭ	
	c	Create functions and its types			
5.	0.	create ranetions and no types.			
] .	0	Demonstrate working of listed librarias for real time			
	a.	applications	20%	6	
		applications.	20%	6	

Instructional Method and Pedagogy: (Max. 100 words)

Utilizing Powerpoint Presentations, Chalk-Board demonstration, videos on various topics, group discussions and seminars are some of the methods adopted to improve the student ability to grasp the fundamental knowledge related to the subject. The discussion during the theoretical sessions and hands-on sessions during the practical laboratory sessions will enable students to apply the knowledge gained on real-life problems. Additional activities like minor projects on the said subject will work as a stepping stone in enhancing the student's performance.

Course Outcome:	Blooms' Taxonomy Domain	Blooms' Taxonomy Subdomain
After successful completion of the above course, student	s will be able to:	
CO1: Understand basics of python programming.		Understand
CO2: Understand the concepts of loops and control structures for different purposes.		Understand
CO3: Comprehend about working of list and dictionaries.	Cognitive	Comprehend
CO4: Design python application with the use of date-time and other functions.		Design
CO5: Apply in development of real time applications.		Apply

Learning R	esources
1.	Reference Books:
	 Python Crash Course: A Hands-On, Project-Based Introduction to Programming (2nd Edition)
	2. John V Guttag. "Introduction to Computation and Programming Using Python", Prentice Hall of India
	3. R. Nageswara Rao, "Core Python Programming", dreamtech
	 Wesley J. Chun. "Core Python Programming - Second Edition", Prentice Hall
	 Kenneth A. Lambert, "Fundamentals of Python – FirstPrograms", CENGAGE Publication
	6. Luke Sneeringer, "Professional Python", Wrox
	 John Paul Mueller, Luca Massaron, Python for Data Science For Dummies, WILEY
	8. Wes McKinney, Python for Data Analysis Data Wrangling with
	Pandas, NumPy, and IPython, 2nd Edition, O'REILLY
2.	Other Electronic Resources:
	1. <u>https://onlinecourses.nptel.ac.in/noc22_cs32/preview</u>
	2. https://onlinecourses.swayam2.ac.in/aic20_sp33/preview

Evaluation Scheme	Total Marks	
Theory:	20 marks	
Mid semester Marks		
Theory:	40 marks	
End Semester Marks		
Theory:		
Continuous Evaluation	Attendance	05 marks
Component Marks	MCQs	10 marks
	Open Book Assignment / Skill enhancement activities / case study / Assignment	15 marks
	Article Review /Presentation/ miscellaneous activities / Projects	10 marks
	Total	40 Marks
Practical Marks	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

COURSE CODE	COURSE NAME	SEMESTER
MSDS202	Database Management System	II

Teaching Scheme (Hours)			Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
45	30	0	75	3	1	0	4

Course Prerequisites	Fundamental knowledge of any basic programming language.	
Course Category	Major Course	
Course focus	Employability	
Rationale	The present course will equip students with the skills related to data categorization, data classification and formation of databases using SQL. This will help students to design and build a simple database system and demonstrate competence with the fundamental tasks involved with modeling, designing, and implementing a DBMS. It also provides students with theoretical knowledge and practical skills in the use of databases and database management systems in information technology applications.	
Course Revision/ Approval Date:		
Course Objectives	To enable the student to:	
(As per Blooms' Taxonomy)	 Understand basic principles of classification and categorization of data and databases. Understand the basic elements of a relational database management system. Understand & Remember the fundamentals of a database of collected data & apply the data models for relevant problems. Understand the entity relationship and convert the entity relationship. diagrams into RDBMS and apply SQL queries on the respective data into RDBMS and apply SQL queries on the data. Understand the basic understanding related to query evaluation and optimization techniques 	

Course Content (Theory)	Weightage	Contact hours
Unit 1: Basic Concepts - Purpose of database systems-Components of DBMS – DBMS Architecture and Data Independence- Data modeling - Entity Relationship Model, Relational – Network- Hierarchical and object-oriented models, Data modeling using the Entity Relationship Model.	25%	12
Unit 2: Relational databases, Structure of relational databases — relational algebra- tuple relational calculus, Data definition with SQL, insert, delete and update statements in SQL- data manipulation with SQL, –Introduction to views, joins and types of queries.	15%	6
Unit 3: Introduction to Transaction Processing- Transaction and System, Concepts Desirable properties of Transactions- Schedules and Recoverability- Serializability of Schedules-Query processing and Optimization-Concurrency Control - assertions – triggers.	15%	6
Unit 4: Database Design– Design guidelines– Relational database design – Integrity Constraints – Domain Constraints-Referential integrity, ACID properties, Functional Dependency Normalization using Functional Dependencies, Normal forms based on primary keys- general definitions of Second and Third Normal Forms. Boyce Codd Normal Form– Multivalued Dependencies and Fourth Normal Form – Join Dependencies and Fifth Normal Form – Pitfalls in Relational Database Design.	25%	12
Unit 5: Distributed databases: Distributed Database Concepts- Data Fragmentation, Replication and Allocation Techniques- Different Types- Query Processing – semi-join - Concurrency Control and Recovery.	20%	9

List of Practical	Weightage	Contact
		hours
1: Demonstrate various SQL based software.	9%	4
2: Understand the working of ER Model.	7%	2
3: Demonstrate creation of database and table.	7%	2
4: Working of insert, update, delete queries.	7%	2
5: Create a view for the SQL table.	7%	2
6: Demonstrate working of different view manipulation.	7%	2
7: Demonstrate working of Oracle.	7%	2
8: Demonstrate the working of PL/SQL.	7%	2
9: Demonstrate advanced database concepts.	7%	2
10: Demonstrate working of different join operations.	7%	2
11: Creation of primary key and foreign key.	7%	2
12: Demonstrate working of relational databases in real time	7%	2
applications.		

13: Demonstration of distributed databases.	7%	2
14: Understand the working of semi-join.	7%	2

Utilizing models, Powerpoint Presentations, Chalk-Board demonstration, videos on various topics, group discussions and seminars are some of the methods adopted to improve the student ability to grasp the fundamental knowledge related to database management systems. The discussion during the theoretical sessions and hands-on sessions during the practical laboratory sessions will enable students to apply the knowledge gained.

Course Outcome:	Blooms' Taxonomy Domain	Blooms' Taxonomy Subdomain
After successful completion of the above course, student	ts will be able to:	
CO1: Demonstrate the basic elements of a relational database management system.	Understand & Apply	Define, Describe & Demonstrate
CO2: Describe the fundamental elements of relational database management systems.	Understand & Apply	Define, Describe & Demonstrate
CO3: Design entity relationship and convert entity relationship diagrams into RDBMS and formulate SQL queries on the respective data into RDBMS and formulate SQL queries on the data.	Evaluate & Create	Analyze & Design
CO4: Demonstrate the fundamental understanding related to query evaluation and optimization techniques.	Understand	Describe
CO5: Extend normalization for the development of application softwares.	Understand & Remember	Define, Describe & Demonstrate

Learning R	esources
1.	Reference Books:
	 Elmasri and Navathe, Fundamentals of Database System, (4th Edition), Pearson Education Asia (2008).
	 Henry F Korth, Abraham Silbershatz, Database System Concepts, McGraw Hill 2nd edition. (2005).

	 C.J.Date, An Introduction to Database Systems, (7th Edition) Pearson Education Asia (2006). Bibin C. Desai, An Introduction to Database Systems, Galgotia Publications, (2000).
2.	Other Electronic Resources:
	1. <u>https://ohmecourses.npter.ac.m/noc22_cs91/preview</u>
	2. <u>https://www.coursera.org/learn/database-structures-and-management-</u>
	with-mysal

Evaluation Scheme	Total Marks	
Theory:	20 marks	
Mid semester Marks		
Theory:	40 marks	
End Semester Marks		
Theory:		
Continuous Evaluation	Attendance	05 marks
Component Marks	MCQs	10 marks
(CEC)	Open Book Assignment / Skill enhancement activities / case study / Assignment	15 marks
	Article Review /Presentation/ miscellaneous activities / Projects	10 marks
	Total	40 Marks
Prontical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

COURSE CODE	COURSE NAME	SEMESTER
MSDS203	Fundamentals of AI & ML	II

Teaching Scheme (Hours)			Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
45	30	0	75	3	1	0	4

Course Prerequisites	Basic programming proficiency (Python/Java/R), foundational			
	knowledge in calculus, linear algebra, and probability.			
Course Category	Major Course			
Course focus	Employability			
Rationale	This course offers a comprehensive exploration of Artificial Intelligence (AI) and Machine Learning (ML) principles, equipping students with practical knowledge and skills essential for modern data-driven environments. Through a structured curriculum, students delve into the historical evolution, diverse algorithms, and ethical considerations surrounding AI and ML applications. By fostering critical thinking and hands-on experience, the course aims to empower learners to leverage AI and ML techniques effectively, contributing to innovative solutions across various domains while promoting responsible and ethical use of emerging technologies.			
Course Revision/ Approval Date:				
Course Objectives	To enable the student to:			
(As per Blooms' Taxonomy)	 Understand the development of Machine Learning and its practical applications in various fields. Explore different algorithms used in supervised learning and their practical implications. 			
	3: Investigate unsupervised learning techniques and understand how reinforcement learning contributes to decision-making processes.			

4: **Examine** the principles behind neural networks and their applications in pattern recognition and data classification.

5: **Develop** skills in **validating** and **evaluating** machine learning models while considering ethical implications.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction Overview of AI and ML, Historical perspective, Types of Machine Learning: Supervised, Unsupervised, Reinforcement Learning, Applications of AI and ML in Data Science	10%	8
Unit 2: Supervised Learning Linear Regression, Logistic Regression, Decision Trees and Random Forests, Support Vector Machines, Decision Boundary	20%	12
Unit 3: Unsupervised Learning & Reinforcement Learning Clustering: K-Means, Dimensionality Reduction: PCA, Association Rules: Apriori algorithm	20%	10
Unit 4: Neural Network Learning Principles & Models Neural Networks basics, Perceptron Learning, Feedforward Networks and Back Propagation, Gradient Descent Learning Algorithm, Application of ANN for classification, Multi-layer NN and Deep Learning Network principles	25%	15
Unit 5: Model Validation & Evaluation Training-Set, Test-Set, Validation-Set, Cross-validation, Ethical considerations in AI and ML	25%	15

	List of Practical	Weightage	Contact hours
1: Dat : a. b. c.	a Exploration and Preprocessing Importing datasets using Python libraries like Pandas. Exploring dataset characteristics: dimensions, data types, missing values. Data cleaning techniques: handling missing data, outlier	12%	4

	detection, and removal.		
2: Sup	ervised Learning		
a.	Implementing Linear Regression for predicting		
	continuous variables.		
b.	Building Classification models using Logistic	20%	6
	Regression, Decision Trees, and Random Forests.		
c.	Evaluating model performance using metrics like		
	accuracy, precision, recall, and F1-score.		
3: Uns	upervised Learning		
a.	Applying K-Means Clustering for grouping similar data		
	points.		
b.	Performing Dimensionality Reduction using Principal	12%	4
	Component Analysis (PCA).		
c.	Mining association rules with the Apriori algorithm for		
	market basket analysis.		
4: Neu	ral Network Modeling		
a.	Building a simple Perceptron for binary classification		
	tasks.		
b.	Constructing a Feedforward Neural Network using	20%	6
	TensorFlow or PyTorch.		
c.	Training and optimizing Multi-layer Neural Networks		
	for image classification tasks.		
5: Mod	lel Validation and Evaluation		
a.	Splitting datasets into training, validation, and test sets.		
b.	Implementing Cross-validation techniques to assess	200/	6
	model generalization.	20%	0
c.	Performing hyperparameter tuning using techniques like		
	Grid Search or Random Search.		
6: Data	a Visualization		
a.	Creating various types of plots and charts using libraries		
	like Matplotlib and Seaborn.	6%	2
b.	Visualizing dataset distributions, feature importance, and		
	model performance metrics.		
7: Ethi	cal Considerations		
a.	Discussing ethical implications of AI and ML		
	applications.		
b.	Identifying biases in datasets and models, and strategies	6%	2
	for mitigation.		
c.	Debating real-world case studies involving AI ethics and		
	societal impact.		

Powerpoint presentation, Interactive lectures, Hands-on coding sessions, Group discussions and case studies, Peer review and presentations, Guest lectures and industry interactions.

Course Outcome:	Blooms' Taxonomy Domain	Blooms' Taxonomy Subdomain
After successful completion of the above course, student	ts will be able to:	
CO1: Demonstrate an understanding of the historical background and real-world applications of Machine Learning.		Understand
CO2: Analyze and compare various supervised learning algorithms in practical contexts.		Analyze
CO3: Apply unsupervised learning techniques and comprehend the role of reinforcement learning in decision-making.	Cognitive	Apply
CO4: Demonstrate proficiency in understanding neural network principles and their applications.		Understand
CO5: Evaluate machine learning models effectively and consider ethical implications in their applications.		Evaluate

Learning R	esources
1.	Reference Books:
	 "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron
	 "Pattern Recognition and Machine Learning" by Christopher M. Bishop
	3. Online resources, research papers, and documentation for relevant libraries
	 Artificial Intelligence – Guide to Intelligent Systems by Michael Negnevitsky
	 Data Science from Scratch – First Principle with Python – Joel Grus O'Reilly
	6. Introduction to Machine Learning by Tom Mitchel MIT Press
	7. Machine Learning for Absolute Beginners – Oliver Theobald
3.	Other Electronic Resources:
	1. <u>https://onlinecourses.nptel.ac.in/noc23_ge40/preview</u>
	2. <u>https://onlinecourses.swayam2.ac.in/cec21_cs08/preview</u>

Evaluation Scheme	Total Marks	
Theory:	20 marks	
	40 1	
I neory: End Semester Marks	40 marks	
Theory:		
Continuous Evaluation	Attendance	05 marks
Component Marks (CEC)	MCQs	10 marks
	Open Book Assignment / Skill enhancement activities / case study / Assignment	15 marks
	Article Review /Presentation/ miscellaneous activities / Projects	10 marks
	Total	40 Marks

COURSE CODE	COURSE NAME	SEMESTER
MSDS204	Numerical Methods and Analysis using	II
	MATLAB	

Teaching Scheme (Hours)			Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
45	30	0	75	3	1	0	4

Course Prerequisites	Basic knowledge of algebra and calculus. Basic knowledge of derivatives and integration.			
Course Category	Minor			
Course focus	Employability			
Rationale	This course involves solving the system of linear equations, approximation of the root of nonlinear equations. Students also learn interpolation methods for equi-distant and non equi-distant data. Also they develop the skill to find numerical integration and differentiation and techniques to solve IVP.			
Course Revision/ Approval Date:				
Course Objectives	To enable the student to:			
(As per Blooms' Taxonomy)	1: Solve: Make the students familiarize with the ways of solving complicated mathematical problems numerically			
	2: Understand: To help them become familiar with MATLAB and other convenient numerical software such as Microsoft Excel and with simple programming			
	3: Recognize, Find: Obtain numerical solutions to non-algebraic equations and systems of linear equations.			
	4: Understand: Describe and understand of the several errors and approximation in numerical methods			
	5: Understand, Find: Understanding of several available Solution techniques for differential Equations in One Variable. Study of Curve Fitting and Interpolation.			

Course Content (Theory)	Weightage	Contact hours
Unit 1: Errors: Notions of round off, truncation and other errors, Errors in numerical computations Solution of Algebraic and Transcendental Equations: Bisection, False position, Iterative Method, Newton Raphson Method, Secant Method. Solution using Matlab	20%	9
Unit 2: Solution of system of Linear Equations: Gauss Elimination method, Gauss Jordan Method, LU decomposition method, Gauss Jacobi Method, Gauss Seidel method. Solution using Matlab	20%	9
Unit 3: Interpolation: Newton's forward and backward interpolation, Newton's divided difference interpolating polynomials, Lagrange Interpolating polynomials. Solution using Matlab.	20%	9
Unit 4: Numerical Differentiation: First and second order differentiation Equations of Equally Spaced Data. Solution using Matlab. Numerical Integration: Trapezoidal rule, Simpson's one third and 3/8th rule. Solution using Matlab	20%	9
Unit 5: Numerical methods for Solution of ordinary differential equations: Taylor's series method, Euler's method, Modified Euler's method, Runge Kutta forth order method, Milne's Predictor Corrector Method. Finite element method to solve second order ODE. Solution using Matlab. Curve Fittings: General Linear Least Squares, Fitting of quadratic and exponential curves.Solution using Matlab.	20%	9

List of Practicals	Weightage	Contact
		hours
1: Introduction to MATLAB, Matrix algebra, functions.	7%	2
2: Loops: For, if else , while Programme for Bisection Method.	7%	2
3: Programme for Regula-falsi and Secant Method.	7%	2
4: Programme for Newton-Raphson's Method.	7%	2
5: Programme for Difference Table.	7%	2
6. Programme for Newtons's Forward and Backward Interpolation.	8%	3
7. Programme for Newton's Divided Difference Interpolation Method.	7%	2

8. Programme for Lagrange's Method.	/%	Z
9. Use of Curve fitting Toolbox.	7%	2
10. Programme for Numerical integrations (Trapezoidal and	8%	3
simpson's rules).		
11. Solving system of linear equations.	7%	2
12. Plotting 2D and 3D graphs.	7%	2
13. Programme for Euler's Method.	7%	2
14. Practice test and Revision.	7%	2

Instructional Method and Pedagogy: Chalk board, Powerpoint presentations, Use of Mathlab, Excel and Geogebra. Group Discussion, Case Study, Quizziz application.

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Subdomain
After successful completion of the above course, studen	ts will be able to:	
CO1: Apply, solve: Apply numerical methods to find out solutions of non-algebraic equations using different methods under different conditions, and numerical solutions of systems of algebraic equations.	Apply	Describe, Find
CO2: Demonstrate, find: Apply various interpolation methods and finite difference concepts.	Understand, Remember	Demonstrate & Examine, Find
CO3: Demonstrate: Work out numerical differentiation and integration whenever and wherever routine methods are not applicable	Understand, Remember	Demonstrate & Examine, Find
CO4: Solve: Work numerically on the ordinary differential equations using different methods through the theory of finite differences.	Evaluate	Examine, Find
CO5: Understand: Work numerically on the partial differential equations using different methods through the theory of finite differences.	Understand, Remember, Apply & Analyze	Define, Classify, Describe, Demonstrate & Examine

Learning Resources				
1.	 Reference Books: S. S. Sastry, Introductory methods of Numerical Analysis, 5th Edition, Prentice-Hall India, 2012. G. Shankar Rao, Numerical Analysis, New Age International Pvt. Ltd., 2006. P.C. Biswal, Numerical Analysis, Prentice-Hall India, 2008. 			
2.	Journals & Periodicals: Mathematics Open			
3.	Other Electronic resources: 1. MATLAB, Microsoft Excel, Geogebra Toolbox			

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous Evaluation Component Marks	Attendance MCQs Open Book Assignment / Skill enhancement activities / case study / Assignment	05 marks 10 marks 15 marks
	Article Review /Presentation/ miscellaneous activities / Projects10 marTotal40 Mar	
Practical Marks	AttendancePractical ExamVivaJournalDisciplineTotal	05 marks 20 marks 10 marks 10 marks 05 marks 50 Marks

COURSE CODE	COURSE NAME	SEMESTER
MSDS205	Statistics - II	П

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	ecture Practical		Total Credit
45	30	0	75	3	1	0	4

Course Prerequisites	Basic concepts related to Statistics	
Course Category	Minor	
Course focus	Employability	
RationaleThe syllabus covers foundational and advanced state concepts essential for data science. Beginning with hypo- testing, students learn to draw conclusions from data progress to understanding standard error, sate distribution, and significance testing techniques for ad- estimation and analysis. Advanced statistical test chi-square and ANOVA equip students to analyze conditionate datasets effectively. The study of advanced in techniques enhances multidimensional data evaluation series analysis provides skills for forecasting and identification, preparing students for real-world challenges across various industries.		
Course Revision/ Approval Date:		
Course Objectives	To enable the student to:	
(As per Blooms' Taxonomy)	 As per Blooms' axonomy) Develop proficiency in conducting hypothesis to and interpreting their results. Understand the significance of standard error sampling distribution in statistical analysis. Explore advanced statistical tests and to applications in data science. Introduce weighted composite index numbers quality indexing methods for representing assessing complex data structures. Develop skills in analyzing time series data identifying trends, seasonal variations, and cycl patterns. 	

Course Content (Theory)	Weightage	Contact hours
Unit 1: Statistical Inference for Data Science Introduction to Hypothesis Testing: Basics of hypothesis testing, null and alternative hypotheses. Case studies/examples related to hypothesis testing.	10%	4
 Unit 2: Standard Error and Sampling Distribution: Understanding standard error, sampling distribution, and estimation techniques. Test of Significance: Two-tailed test, one-tailed test, Z-test for significance of coefficient of correlation. 	15%	8
Unit 3: Advanced Statistical Tests Advanced Tests of Goodness: Introduction to advanced chi-square tests and their applications in data science, additional tests used for checking goodness of fit and independence in categorical data. ANOVA/MANOVA: Introduction to ANOVA/MANOVA and their application in analyzing the variance. Utility of ANOVA/MANOVA in data science.	20%	9
Unit 4: Advanced Indexing Techniques Composite Index Numbers: Weighted composite index numbers, composite indices in representing complex data structures. Quality Indexing:	22%	12
Introduction of quality indexing methods and their application in assessing data quality, role of quality indices in data science. Unit 5: Time Series Analysis Introduction, Components of Time series analysis, Measurement of trends-Graphical method, semi-average method, Moving average method, least square method, Measurement of seasonal variation-simple average, Ratio to trend and Ratio to moving average method, cyclical variation.	22%	12

		List of Practicals	Weightage	Contact hours
1:				
	a.	Use Excel/R to conduct t-tests and z-tests for population mean.		
	b.	Perform hypothesis testing for population proportions using Excel/R functions.		

	c.	Analyze real-world datasets to formulate and test	20%	6
	d.	Conduct hypothesis tests on sample data provided in		
		Excel sheets or imported into R.		
	e.	and graphical representations in Excel/R.		
	f.	Compare outcomes of hypothesis tests for different		
		scenarios.		
2:				
	a.	Generate sampling distributions using Excel/R functions.		
	b.	Calculate standard error for sample means and		
	C	proportions. Visualize sampling distributions and standard error	20%	6
	U.	using Excel/R plots.		
	d.	Perform two-tailed and one-tailed tests using Excel/R functions		
	e.	Conduct Z-tests for correlation coefficients in Excel/R.		
	f.	Interpret p-values and make decisions based on test		
3.		icsuits.		
5.	0	Use Excel/P to perform chi square tests for		
	а.	independence and goodness of fit.		
	b.	Apply additional tests for categorical data analysis, such	20%	6
	c.	Interpret test results and assess the goodness of fit in	2070	0
	4	Excel/R.		
	a.	and/or built-in functions in R.		
	e.	Compare group means and test for statistical		
	f.	Visualize multivariate data using plots and graphs in R.		
4:		<u> </u>		
	a.	Calculate weighted composite index numbers using		
	L	Excel formulas or R functions.		
	D.	on index values.	20%	6
	C.	Interpret composite indices and assess trends over time.		
	a.	assess data quality.		
	e.	Evaluate data integrity and identify areas for		
	f.	Develop quality assurance strategies for data science		
		projects.		
5:				
	a. ⊾	Use Excel/R to plot time series data and identify trends.		
	D.	Calculate trend measures like moving averages and least		

squares in Excel/R. c. Analyze seasonal variation using Excel/R functions and visualize seasonal patterns. d. Detect the cyclical patterns in time series data using Excel/R. e. Apply statistical methods to measure cyclical variation and assess its significance. f. Interpret cyclical trends and their implications for forecasting and decision-making.

Instructional Method and Pedagogy: Chalk board, Powerpoint presentations, demonstrations, Hands-on sessions, discussion, Quiz, online materials, Small projects, etc.

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Subdomain
After successful completion of the above course, student	ts will be able to:	
CO1: Demonstrate the ability to formulate null and alternative hypotheses, conduct hypothesis tests using appropriate statistical methods, and interpret the results effectively.	Apply	Formulate Conduct Interpret
CO2: Analyze sampling distributions and understand the role of standard error in estimating population parameters, enabling them to conduct tests of significance confidently.	Understand	Analyze Understand Estimate Conduct
CO3: Apply advanced chi-square tests and ANOVA/MANOVA techniques to analyze complex datasets, deriving meaningful insights and making informed decisions in data science contexts.	Apply	Apply Analyze Derive Make
CO4: Construct weighted composite index numbers and quality indices accurately, demonstrating proficiency in representing data structures and assessing data quality effectively in data science applications.	Create	Construct Demonstrate Represent Assess
CO5: Apply graphical and statistical methods to analyze time series data, measure trends, assess seasonal variations, and identify cyclical patterns accurately, facilitating informed decision-making in data science.	Apply	Apply Analyze Measure Assess Identify Facilitate

Learning R	esources		
1.	Reference Books:		
	 D.C. Montogomery and G.C.Runger, Applied Statistics and Probability for engineers, New Jersey, John Wiley and Sons, 3rd edition, 2003. David. M. Levin, David. F. Stephen, and Cathryn. A. Szadat, (2013), Statistics for managers using MS-Excel, 7Th Edition, Pearson 		
	Education (India)		
	1. S. P. Gupta, 2014, Business Statistics and Statistical Methods, S. Chand Publication New Delbi		
	 L. Mayes & Keying, (2005), Probability Statistics for Engineers and Scientists, Pearson Education. 		
	3. Goon, Gupta and Dasgupta – Fundamentals of Statistics, Vol. I.		
2.	Journal		
3.	Other Electronic resources:		
	2. https://nptel.ac.in/courses/110/108/110108068/		
	3. <u>https://nptel.ac.in/courses/111/108/111108061/</u>		
	4. <u>https://swayam.gov.in/nd2_cec20_ma07/preview</u>		
	5. <u>https://swayam.gov.in/nd1_cec20_ma02/preview</u>		
	6. <u>https://www.coursera.org/learn/statistics</u>		
	7. <u>https://www.coursera.org/specializations/jhu-data-science</u>		

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous		
Evaluation Component Marks	Attendance	05 marks
	MCQs	10 marks
	Open Book Assignment / Skill enhancement activities / case study / Assignment	15 marks
	Article Review /Presentation/ miscellaneous activities / Projects	10 marks
	Total	40 Marks

Discipline	05 marks
Journal	10 marks
Viva	10 marks
Practical Exam	20 marks
Attendance	05 marks